UPP.MAX Basics

What even is UPPMAX?

What about SNIC?

How do I submit jobs to the queue?
UPPMAX Basics

- Organisation
 - What is what
 - What does UPPMAX do
- How a cluster works
- How to use UPPMAX clusters
Organisational orienteering

- VR/SRC and a consortium of universities funds **SNIC** — Swedish National Infrastructure for Computing
- SNIC and Uppsala University funds **UPPMAX** — UU’s supercomputing centre
- NBIS, a part of SciLifeLab, has a facility called **Compute and Storage**, which is hosted by UPPMAX
UPPMAX

• Mission for **SNIC**: to provide a quality high-performance computing environment nationally
 – General purpose
 – Data intensive
 – Sensitive data (human sequences)

• Mission for **UU**: to provide relevant services to the university

• Mission for **NBIS/SciLifeLab**: to provide the best possible environment for data-driven life science, especially bioinformatics
UPPMAX (more concretely)

- Computer infrastructure
 - Clusters
 - Storage
 - Cloud
- Support staff
 - System administrators
 - Application experts
High Performance Computing

Calculation nodes

Login nodes

Storage
High Performance Computing

- Local Disk
- RAM
- Other nodes
- Network storage
- Internet
<table>
<thead>
<tr>
<th></th>
<th>Rackham</th>
<th>Snowy</th>
<th>Bianca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>General-purpose</td>
<td>General-purpose</td>
<td>Sensitive</td>
</tr>
<tr>
<td># Nodes</td>
<td>486</td>
<td>228-ish</td>
<td>200</td>
</tr>
<tr>
<td>Memory/node</td>
<td>128 GB</td>
<td>128 GB</td>
<td>128 GB</td>
</tr>
<tr>
<td>Fat nodes</td>
<td>512 GB - 1 TB</td>
<td>512 GB – 4 TB</td>
<td>256 GB</td>
</tr>
<tr>
<td>Local disk</td>
<td>2 TB</td>
<td>4 TB</td>
<td>4 TB</td>
</tr>
<tr>
<td>(scratch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Login nodes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Storage</td>
<td>Crex, Lutra</td>
<td>Crex, Lutra</td>
<td>Castor, Cygnus</td>
</tr>
<tr>
<td>GPU</td>
<td>No</td>
<td>Nvidia T4</td>
<td>Nvidia A100</td>
</tr>
</tbody>
</table>
Other systems

- Dis — part of the SNIC Science Cloud
- Grus — NGI data delivery
- Da Vinci — GPU resource
SNIC Science Cloud (SSC)

- cloud.snic.se
- OpenStack IaaS cloud
- Useful for e.g.:
 - Hadoop/Spark
 - Jupyter workbooks
 - Kubernetes or other container pipeline workflows
 - Developing SaaS or PaaS software
Storage systems

- Domus — Home directories for Rackham/Snowy
- Crex — Project storage for Rackham/Snowy
- Castor — Project storage for Bianca
- Cygnus — “New” project storage for Bianca
- Lutra — Paid-for storage on Rackham/Snowy
Exercise

• Open a web browser to http://uppmax.uu.se.
• Find articles about how to best use the storage systems and good data practices.
• Look at Support -> User Guides and Support -> FAQ
• Find and post articles in chat and HackMD page
Solution

- Disk Storage Guide
- How to use a node’s own disk
- How does automatic backup of project areas work at UPPMAX?
- File compression guide
- How can I compress my files as quickly and efficiently as possible?
- How should I compress FastQ-format files?
- Which compression format should I use for NGS-related files (FastQ, Fasta, VCF, GFF, etc.)?
Storage Basics

- All nodes can access:
 - your home directory on Domus or Castor
 - a project directory on Crex or Castor
 - Its own local disk (2-3 TB)
- If you’re reading/writing a file once, use a directory on Crex or Castor
- If you’re reading/writing a file many times...
- copy to the file to “scratch”, the node local disk
- “cp myFile $SNIC_TMP”
Bianca

- **Login:**
 - First 2FA login to Bianca portal
 - Second regular login to private cluster
- **Data import/export:**
 - SFTP from “outside”
 - Data in non-backed up “wharf” directory
 - NGI delivery via SUPR
Bianca Has No Internet

• We have “solutions”
 – Data transfers:
 • NGI Deliver through SUPR
 • Transit server (transit.uppmax.uu.se)
 – Software
 • Almost the same software library as Rackham
 • Local Conda repository
 • Local Perl modules
 • Local R packages
ThinLinc

- Both Rackham and Bianca offer graphical login
- On web: https://rackham-gui.uppmax.uu.se
- Or use the client (only for Rackham)
- Try it now!
Slurm, `sbatch`, the job queue

- Problem: 1000 users, 500 nodes, 10k cores
 - Need a queue:
Slurm, \texttt{sbatch}, the job queue

- Easiest to schedule single-threaded, short jobs
Jobs

- Job = what happens during booked time
- Described in a Bash script file
 - Slurm parameters
 - Load software modules
 - Move around file system
 - Run programs
 - Collect output
- ...and more
Slurm parameters

• 1 mandatory setting for jobs:
 • Which compute project? (−A)

• 3 settings you really should set:
 • Less than one node? (−p)
 • How many cores? (−n)
 • How long at most? (−t)

• If in doubt:
 • -p core
 • -n 1
 • -t 10-00:00:00
Slurm parameters

- Where should it run? \((-p \text{ node or } -p \text{ core})\)
 - Use a whole node or just part of it?
 - 1 node = 20 cores (16 on Bianca & Snowy)
 - 1 hour walltime = 20 core hours = \text{expensive}
 - Waste of resources unless you have a parallel program or need all the memory

- Default value: core
Job length

• How long is it? (-t)
 • Always overestimate with ~50%
 • Jobs killed when timelimit reached
 • Only charged for time used
• -t = time (hh:mm:ss)
 • 78:00:00 or 3-6:00:00
• Default value: 7-00:00:00
Efficient jobs

• Use your booked cores or memory
 – (at least 50%)
• Runtime longer than 1 hour
 – Combine shorter jobs
• Ask UPPMAX support for help!
Interactive jobs

- Most work is most effective as submitted jobs, but e.g. development needs responsivity
- Interactive jobs are high-priority but limited in `–n` and `–t`
- Quickly give you a job and logs you in to the compute node
- Require same Slurm parameters as other jobs
- Try it:
 - `$ interactive -A g2021006 -p core -n 1 -t 10:00`
 - Which node are you on?
 - Logout with Ctrl-D or `logout`
A simple job script template

```bash
#!/bin/bash
#SBATCH -A g2021006
#SBATCH -p core
#SBATCH -n 1
#SBATCH -t 00:10:00
#SBATCH -J Template_script

cd /proj/g2021006/marcusl

module load bioinfo-tools

# do something
echo Hello world!
```
Exercise (1)

- Copy the template from the previous slide
- Put it into a file named “jobtemplate.sh”
- Make the file executable (chmod)
Exercise (2)

- Submit the job:
 - $ sbatch jobtemplate.sh

- Note the job id!

- Check the queue:
 - $ jobinfo -u yourusername

- When it’s done, look for the output:
 - $ ls

- Check the output file to see if it ran correctly
Other Slurm tools

- Squeue — quick info about jobs in queue
- Jobinfo — detailed info about jobs
- Finishedjobinfo — summary of finished jobs
- Jobstats — efficiency of booked resources
Software at UPPMAX

- 800+ programs and packages installed
- Managed by a 'module system'
 - Everything already installed, but hidden
 - Manually loaded before use
 - Bioinformatics tools require loading the “bioinfo-tools” module first

- `module spider <name>` — search for modules
- `module load <module name>` — Loads the module
- `module unload <module name>` — Unloads the module
- `module list` — Lists loaded modules
Software exercise

• **Use `module spider` to find a software you like to use.**

• **Try to run the software, e.g. “$ samtools”**

• **Load the latest version of the module**
 - `load bioinfo-tools first if necessary`
 - You can write “module load samtools” and then TAB-complete to see the available modules

• **Now try to run the software again**
Wrap-up

- In breakout rooms, ask for help:
 - Finding software
 - Writing job scripts
 - Basic Linux